Page 23 - Delaware Lawyer - Fall 2023
P. 23
Machine Learning and Health Care Dis- parities in Dermatology. JAMA Dermatol. 2018;154(11):1247-1248. doi:10.1001/ jamadermatol.2018.2348 https://jama- network.com/journals/jamadermatology/ article-abstract/2688587
11. Fulmer, J. (2022, May 18). Address- ing AI and Implicit Bias in Healthcare https://technologyadvice.com/blog/ healthcare/ai-bias-in-healthcare/
12. Fulmer, supra.
13. Martinez, E. & Kirchner, L., (2021,
June 25). The Secret Bias Hidden in Mortgage-Approval Algorithms. https:// themarkup.org/denied/2021/08/25/the- secret-bias-hidden-in-mortgage-approval- algorithms
14. Lee, R., (2022, November 1) AI can perpetuate racial bias in insurance under- writing https://money.yahoo.com/ai-per- petuates-bias-insurance-132122338.html 15. Mosley and Wenman, Methods for Quantifying Discriminatory Effects on Protected Classes in Insurance (2023) https://www.casact.org/sites/default/ files/2022-03/Research-Paper_Methods- for-Quantifying-Discriminatory-Effects. pdf
16. Mosley and Wenman, supra.
17. Lee, supra.
18. Smith, J., (2023). The Question of AI Bias in Life & Annuities Insurance. (https://sapiens.com/blog/the-question- of-ai-bias-in-life-annuities-insurance/; Martinez, supra.
19. Borgesius, Z., (2018). Discrimina- tion, Artificial Intelligence, And Algo- rithmic Decision-Making Council of Europe, Directorate General of Democ- racy. https://rm.coe.int/discrimination- artificial-intelligence-and-algorithmic-de- cisionmaking/1680925d73 https://pure. uva.nl/ws/files/42473478/32226549.pdf 20. Najibi, A. Racial Discrimination in Face Recognition (October 24, 2024) https://sitn.hms.harvard.edu/flash/2020/ racial-discrimination-in-face-recognition- technology/
21. Buolamwini, J., (2018). Gender Shades: Intersectional Accuracy Dispari- ties in Commercial Gender Classification. https://proceedings.mlr.press/v81/buol- amwini18a/buolamwini18a.pdf; Borge- sius, supra.
22. Rodriguez, M., Nayyer, K. & Suther- land, S. (2020). Artificial Intelligence & Implicit Bias: With Great Power Comes Great Responsibility. 24 AALL Spectrum https://www.canlii.org/en/commentary/ doc/2020CanLIIDocs1609#!fragment/
zoupio-_Toc3Page1
23. Larson, J., Mattu, S., Kirchner, L., & Angwin, J., How We Analyzed the COM- PAS Recidivism Algorithm https://www. propublica.org/article/how-we-analyzed- the-compas-recidivism-algorithm May 23, 2016)
24. Biswas, A., Kolczynska, M., Rantanen, S., & Rozenshtein, P., (2020). The Role of In-Group Bias and Balanced Data: A Com- parison of Human and Machine Recidivism Risk Predictions, Proceedings of the 3rd ACM SIGCAS on Computing and Sustain- able Societies, https://d1.acm.org/doi/ abs/10.114/3378393.3402507; Miron, M., Tolan, S., Gómez, E. & Carlos Castillo (2020, June 7). Evaluating causes of algo- rithmic bias in juvenile criminal recidivism; Dressel, J. & Farid, H. (2018, January 17). The accuracy, fairness, and limits of pre- dicting recidivism Science Advances. Vol
4 Issue 1 https://www.science.org/doi/ full/10.1126/sciadv.aao558
25. Duan, X. Ho, C. & Yin, M.,
(2022). The Influences of Task Design
on Crowdsourced Judgement: A Case Study of Recidivism Risk Evaluation. Proceedings of the ACM Web Confer-
ence 2022. (1685-1696) https://doi. org/10.1145/3485447.3512239
FALL 2023 DELAWARE LAWYER 21